

Using derived data in O2/O2Physics analyses

O2 Analysis tutorial 5.0, 11th November 2025

A few things already said

How to produce derived data

Why you would need derived data A use case

- Say you need to run over tracks
 - You want to extract two-particle correlations
 - You need two nested loops
 - Need particle identification
 - Need some filtering
 - Constraints on execution time

Why you would need derived data A use case - implementation

- You define/use two tasks
 - First one classifies the tracks the classifier
 - Second one processes the classified tracks the consumer
 - and extracts the two-particle correlations
- Tracks classification in a new table
 - Just one single column
 - Produced by the classifier
 - Joined to the Tracks table
 - in the consumer process... subscription

A use case – Table declaration

```
#include "Framework/ASoA.h"
#include "Framework/AnalysisDataModel.h"

namespace o2::aod {
   namespace myTable {
   DECLARE_SOA_COLUMN(TrackCode, trackCode, int, "trackCode");
   } //end myTable namespace
   DECLARE_SOA_TABLE(MyTable, "AOD", "MYTABLE", myTable::TrackCode);
   } //end o2::aod namespace
```

A use case – The producer

```
DECLARE_SOA_COLUMN(TrackCode, trackCode, int, "trackCode");
DECLARE_SOA_TABLE(MyTable, "AOD", "MYTABLE", myTable::TrackCode);
```

```
struct producer {
 Produces<aod::MyTable> thisTableHere;
  . . .
 process(soa::Join<Tracks, TracksExtras> const& myTracks) {
   for (auto track : myTracks) {
      int thetrackcode = -1;
      thisTableHere(thetrackcode); //this fills our new table!
```

A use case – The consumer

DECLARE_SOA_COLUMN(TrackCode, trackCode, int, "trackCode");
DECLARE_SOA_TABLE(MyTable, "AOD", "MYTABLE", myTable::TrackCode);

```
struct consumer {
  process(o2::aod::Collision const& collision,
          soa::Filtered<soa::Join<Tracks, TracksExtras, MyTable>> const& myTracks) {
   for (auto track1 : myTracks) {
     for (auto track2 : mvTracks) {
       myHist[track1.trackCode][track2.trackCode]->Fill(getDeltaPhi(track1,track2));
```

O2 Analysis tutorial 5.0 - Using derived data in O2/O2Physics analyses

Are these derived data? The described use case

- Actually, yes
 - You produce a table from the processing of other tables
- You benefit from the SOA approach
 - Faster access
 - Bulk processing
 - Zero copy

Are these derived data? The described use case

- But we will not refer to them as derived data
 - You process them on the fly
 - You don't store them
 - You shouldn't / cannot store them
 - You should use them as much as you can!!!

Storing and using derived data

Derived table handling

- · Writing tables to disk
- Any table that is accessible by its type can be written to disk at the end of processing by using:
 --aod-writer-keep command line option (See docs for more options)
- · This is mainly useful for storing skims and ML training data
- Tables are stored as ROOT trees

Using tables in processing

- Any table that is accessible by its type and has been created by means of Produces<> ,Spawns<> or Builds<> can be subscribed by other tasks in the workflow
- It behaves exactly as the tables that were read from AOD file and can be subjected to the same operations
- A typical usage is joining the data tables with those produced by helper tasks (e.g. track DCA, PID, track and event selection)

→ More in the hands-on!

39

Saving and retrieving derived data

- Saving tables to a file
 - OutputDirector configuration file with --aod-writer-json
 - https://aliceo2group.github.io/analysis-framework/docs/basics-usage/SavingTablesToFile.html
- Reading tables from files
 - InputDirector configuration file with --aod-reader-json
 - https://aliceo2group.github.io/analysis-framework/docs/basics-usage/ReadingTablesFromFile.html

But that is for your local tests

How to do it

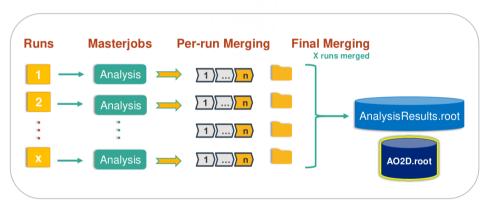
```
namespace cfskim
DECLARE SOA COLUMN(CFCollisionFlags, selflags, uint64 t):
DECLARE SOA_INDEX_COLUMN(CFCollision, cfcollision);
DECLARE_SOA_COLUMN(CFTrackFlags, trackflags, uint64_t);
DECLARE SOA COLUMN(CFPidFlags, pidflags, uint64 t):
DECLARE_SOA_COLUMN(Pt, pt, float);
DECLARE_SOA_COLUMN(Eta, eta, float);
DECLARE SOA COLUMN(Phi, phi, float):
DECLARE SOA DYNAMIC COLUMN(Sign, sign,
                            \Pi(\text{uint64 t mask}) \rightarrow \text{int8 t}
                            \{ \text{ return } ((\text{mask } \& 0x1L) == 0x1L) ? 1 :
                                  ((mask & 0x2L) == 0x2L) ? -1
} // namespace cfskim
DECLARE_SOA_TABLE(CFCollisions, "AOD", "CFCOLLISION",
                  o2::soa::Index<>.
                   collision::PosZ.
                  bc::RunNumber.
                   timestamp::Timestamp.
                  cfskim::CFCollisionFlags):
DECLARE_SOA_TABLE(CFTracks, "AOD", "CFTRACK",
                  o2::soa::Index<>.
                   cfskim::CFCollisionId.
                   cfskim::CFTrackFlags.
                   cfskim::Pt.
                   cfskim::Eta.
                   cfskim::Phi.
                   cfskim::Sign<cfskim::CFTrackFlags>):
DECLARE_SOA_TABLE(CFTrackPIDs, "AOD", "CFTRACKPID",
                   cfskim::CFPidFlags):
```

```
"OutputDirector": {
 "debugmode": false,
 "resfile": "AnalysisResults trees".
 "resfilemode": "RECREATE".
 "ntfmerge": 1.
 "OutputDescriptors": [
     "table": "AOD/CFCOLLISION/O".
     "treename": "O2cfcollision".
     "columns": [
        "fPosZ".
       "fRunNumber".
       "fTimestamp",
       "fCFCollisionFlags"
     "table": "AOD/CFTRACK/O",
      "treename": "02cftrack",
     "columns": [
        "fIndexCFCollisions".
       "fCFTrackFlags",
       "fPt",
        "fEta".
        "fPhi"
     "table": "AOD/CFTRACKPID/O",
      "treename": "O2cftrackpid".
      "columns": [
        "fCFPidFlags"
```

On hyperloop it is easier

Derived data settings

- · Displays the tables which are produced by the task
- Here you can enable tables which should be saved into an AO2D.root output file
- This requires a derived data train which, unless 'Ready for slim' is checked, does not submit automatically and may need additional approval
- If you just need the information in these tables in a subsequent wagon in the same train, there is no need to enable the tables
- For derived data of small output size, you can enable the slim derived data option


- In order to update the derived data configuration with the latest O2Physics version of the workflow, click on the Usync button
- By synchronizing the derived data, the tables which no longer belong to the workflow will be removed, and the values of the tables will be updated

But a more varied zoo

Slim Derived Data Train

Slim derived trains provide an AO2D.root to be used locally. Only possible when output < 4GB.

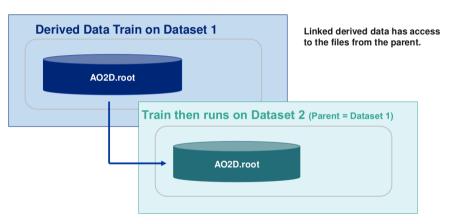

Nicolas Poffley Hyperloop – Accelerating analysis 14

But a more varied zoo

To be used as input in future train runs.

Nicolas Poffley

Hyperloop – Accelerating analysis


16

But a more varied zoo

Linked Derived Data Train

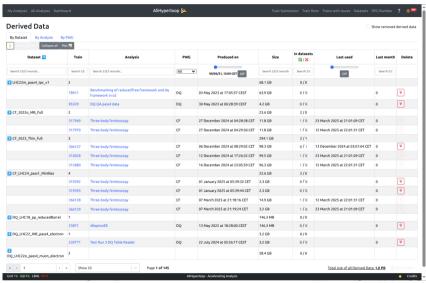
Nicolas Poffley

Hyperloop – Accelerating analysis

17

Ask the train operators

Train runs



The train type is decided by operators at composition in the Train Submission page

- 1. Analysis Train is a standard analysis train and no derived data will be produced
- 2. Slim Derived Data reserved for derived data of small output size
 - · Similarly to the standard derived data case, this train will produce derived data to be used for further analysis
 - The results will be merged across runs and are not available to use in future train runs
 - The data will be automatically deleted after a pre-set period of time
- 3. Standard Derived data will produce derived data to be used for further analysis
 - The results will not be merged across runs and can be used as input for future train runs
- 4. Linked Derived data this option is for derived data which needs to access its parent file when it is processed
 - The derived data file produced will remember its parent files, inheriting also their storage location
 - · The results will not be merged across runs and can be used as input for future train runs
 - Datasets composed from this train need to have parent access level activated

Raluca Cruceru Hyperloop Train System

Productified derived data

Now we are talking!

In Run 3 you cannot walk alone But that's why we are a collaboration

Huge amount of collected data

A Large Ion Collider Experiment

2025 disk usage estimate

- Current disk availability is sufficient for the following processing while retaining data on disk
- Currently available Pb-Pb data on disk:
 - 2023 apass4, apass5
 - 2024 apass1
- However, proper balancing between the tiers is necessary

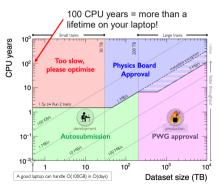
			2025									
ALICE		skimmed pp 2024 apass2		pp low field 2023 apass2		skimmed pp 2025 apass1		O-O, p-O, Ne-Ne 2025	pp low field 2025	TOTAL NEEDED IN 2025	Available July 2025	Difference
	Tier-0	0.88	1.65	0.27	2.82	0.54	3.62	0.84	1.23	11.85	8.00	-3.85
Disk	Tier-1	1.22	2.41	0.27	4.14	2.15	4.57	0.94	1.38	17.07	14.60	-2.47
DISK	Tier-2	1.11	2.16	0.27	0.27 3.70 1.62 4.25 0.87 1.33	15.30	21.40	6.10				
	Total	3.20	6.22	0.81	10.66	4.31	12.44	2.65	3.94	44.23	44.00	-0.23

- In addition, timely deletion of the skimmed CTF 2024 pp data is necessary to accommodate 2025 ones
- Prompt deletion of the full 2025 apass1 AO2D is necessary

ALI	CE	skimmed CTF file pp 2025	full AO2D pp 2025 apass 1	
	Tier-0	8.27	24.38	
Disk	Tier-1	4.14	12.19	
DISK	Tier-2	4.14	12.19	
	Total	16.54	48.76	

July 16th, 2025

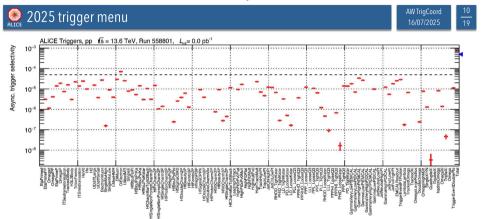
Limited processing capacity



Fair usage policy

- Operators follow guidelines prepared by analysis coordination and approved by physics board (current policy documented here)
 - · Operators cannot grant exceptions, even if justified
- Aim of guidelines
 - · allow efficient analysis by everyone
 - · share resources fairly
 - avoid excessive use; identify room for optimization

Dataset size	CPU limit	Trains / week	Automatic schedule	
	Smal	l datasets		
< 30 TB	1.5 CPU year (550)	14	twice per day	
	Mediu	n datasets		
< 100 TB	3 CPU years (1095)	6	once a day	
< 200 TB	6 CPU years (2190)		twice per week	
	Large	datasets		
< 300 TB	6 CPU years (2190)	2	none	
< 400 TB	6 CPU years (2190)		(PWG / PB approval)	
- FOO TO 0 ODUL (0400)				

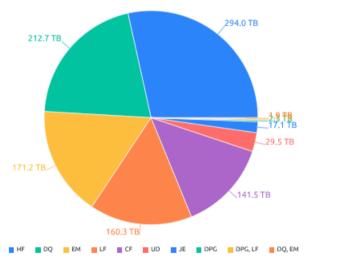


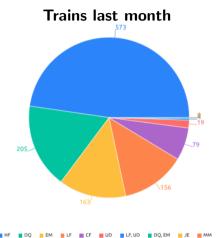
Nicolas Poffley

Hyperloop – Accelerating analysis

66

Relaying on derived/skimmed data


- Even more extended menu with 110 triggers!
 - Adding more femto, beauty-hadron decays, exotic tetraquark/hexaquark searches
 - → Selectivity of the similar magnitude compared to 2024 (< 0.1%)


Derived/skimmed data

- Statistics demanding analyses
 - Will only be able to be run on derived data
 - Derived data stored and productified as actual data
 - Amount of stored derived data limited at PWG level
- Only golden periods will be available for analyses
 - Derived data concept able to be used
 - Derived data will not be stored (size on pair of actual data)

Unless we act as a collaboration

We are doing really well!

Provided we keep cleaning!

Derived/skimmed data

- First rule: don't create your own stored derived data
- Second rule: don't create your own stored derived data
- Present your needs in your PAG
- Be ready to discuss them in your PWG
- Be ready to incorporate others' needs into your schema
- Familiarize with the derived data data model
- The more we share the larger our reach

Derived/skimmed data

- First rule: don't create your own stored derived data
- Second rule: don't create your own stored derived data
- Present your needs in your PAG
- Be ready to discuss them in your PWG
- Be ready to incorporate others' needs into your schema
- Familiarize with the derived data data model
- The more we share the larger our reach

- THANK YOU -