

O2DQ Tutorial J/ψ->ee

A simple example for new members of the
 Jpsi2ee analysis group

Pengzhong Lu 12/11/2025

Work environment

- 1. Lxplus working environment
 - 1. Lxplus is the cern farm server
 - 2. One can easily use daily updated O2Physics with the cvfms (CernVM File System)
- 2. Work with your locally installed O2Physics
 - 1. You can also install the O2Physics on your local machine (Linux, MacOS, WSL)
 - 2. Develop and test your new code, make a PR to commit to O2Physics
- 3. Work on Hyperloop
 - 1. Hyperloop is a tool to run and manage analysis trains on AliEn
 - 2. You can easily deploy (create, copy, compare, update,...), test, and submit your wagons

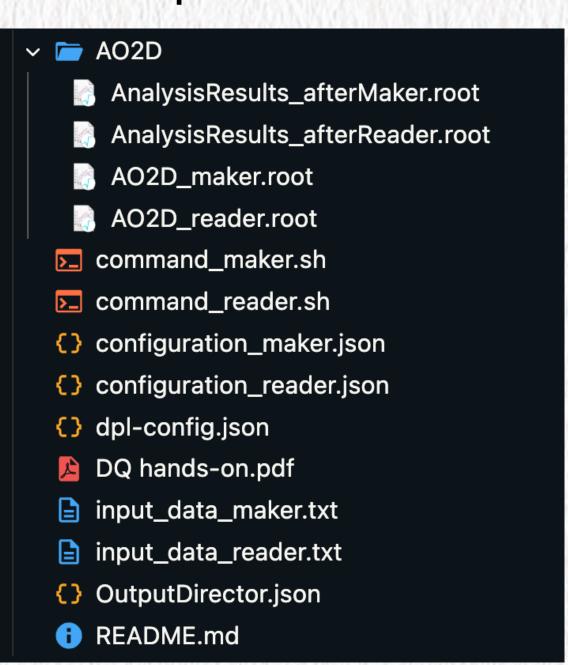
Enlarge your space on lxplus

With cern logged—in in your browser open the link:

https://account.cern.ch/account/

- -> click on web-page (under the title 'Authorization, Resources and CERN applications') on 'Resources and Services', click on 'List services', click on 'AFS Workspaces', click on Settings tab on the left hand side
- -> Increase workspace to 5 GB to have sufficient space for testing (in our case, it is the workfolder)

Lxplus working environment


Connect via ssh to lxplus: ssh -X name@lxplus.cern.ch

- name and password: your cern account
- make sure that you have a valid grid certificate
- cd \$HOME directory

Download materials for this tutorial:

https://cernbox.cern.ch/index.php/s/3GN7NFOuCmzUQpl

Cross check you have the following materials

Software version to use

/cvmfs/alice.cern.ch/bin/alienv enter VO_ALICE@O2Physics::daily-20251106-0000-1

Older or newer versions may not be compatible, as O2Physics is updated daily. The provided configuration.json and command.sh may not work with other versions of O2Physics.

Tasks used today

PWGDQ/TableProducer

generatedQuarkoniaMC.cxx	
tableMaker.cxx	
tableMakerJpsiHf.cxx	
tableMakerMC.cxx	
tableMakerMC_withAssoc.cxx	(
tableMakerMuonMchTrkEfficie	ency.cxx
tableMaker_withAssoc.cxx	

PWGDQ/Task

DalitzSelection.cxx
MIDefficiency.cxx
ModelConverterEventExtended.cxx
ModelConverterMultPv.cxx
ModelConverterReducedMCEvents.cxx
TagAndProbe.cxx
dqCorrelation.cxx
dqEfficiency.cxx
dqEfficiency_withAssoc.cxx
dqFlow.cxx
filterPP.cxx
filterPPwithAssociation.cxx
filterPbPb.cxx
mchAlignRecord.cxx
muonDCA.cxx
qaMatching.cxx
quarkoniaToHyperons.cxx
tableReader.cxx
tableReader_withAssoc.cxx
taskFwdTrackPid.cxx
taskJpsiHf.cxx
taskMuonMchTrkEfficiency.cxx

v0selector.cxx

Task Selection: Focus on the two most commonly used tasks for most analyses:

o2-analysis-dq-table-maker-with-assoc

o2-analysis-dq-table-reader-with-assoc

Other tasks are for different purposes and are not included.

How to run tasks

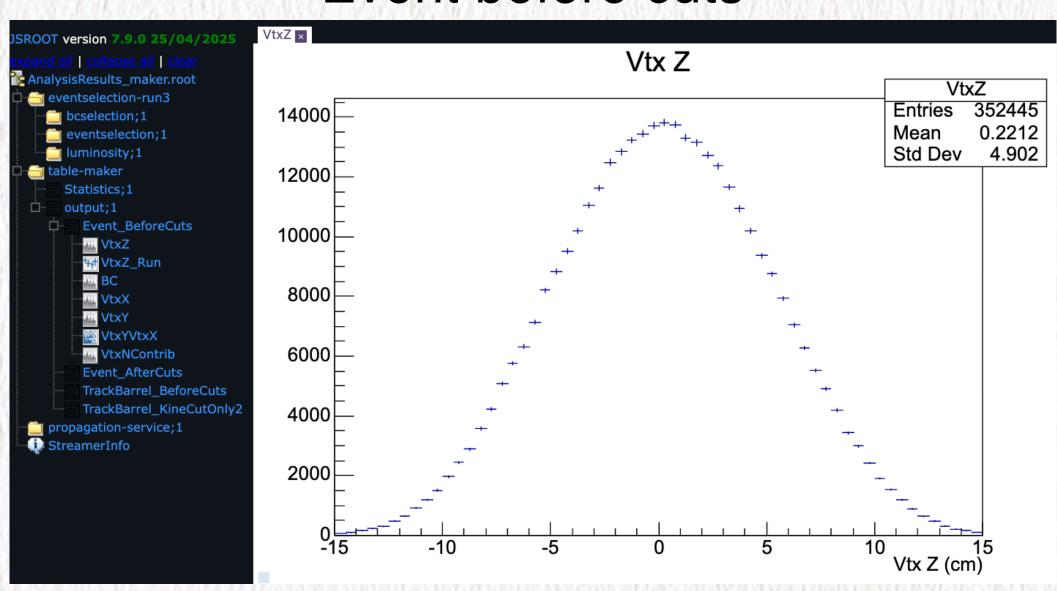
Workflow Options:

<u>o2-analysis-dq-table-maker-with-assoc</u> and <u>o2-analysis-dq-table-reader-with-assoc</u> can be run in the same workflow.

Alternatively, run <u>o2-analysis-dq-table-maker-with-assoc</u> first to produce the so-called reducedAO2D files, and then use <u>o2-analysis-dq-table-reader-with-assoc</u> on the reducedAO2D files.

To run o2-analysis-dq-table-maker-with-assoc:

./command_maker.sh


```
o2-analysis-pid-tof-merge -b --configuration json://configuration_maker.json | o2-analysis-ft0-corrected-table -b --
configuration json://configuration_maker.json | o2-analysis-tracks-extra-v002-converter -b --configuration
json://configuration_maker.json | o2-analysis-multcenttable -b --configuration json://configuration_maker.json | o2-
analysis-dq-table-maker-with-assoc b --configuration json://configuration_maker.json | o2-analysis-event-selection-
service -b --configuration json://configuration
json://configuration_maker.json | o2-analysis-pid-tpc-service -b --configuration json://configuration_maker.json | o2-
analysis-track-to-collision-associator -b --configuration json://configuration_maker.json | o2-analysis-trackselection -
b --configuration json://configuration_maker.json --aod-file @input_data.txt --aod-writer-json OutputDirector.json
```

o2-analysis-task -b -- configuration json://configName.json

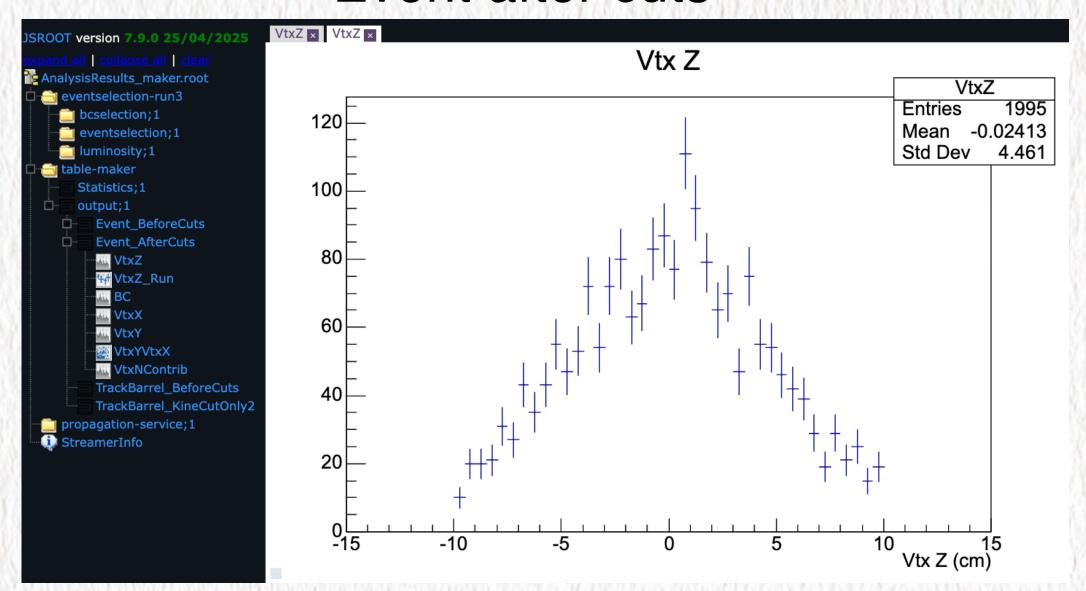
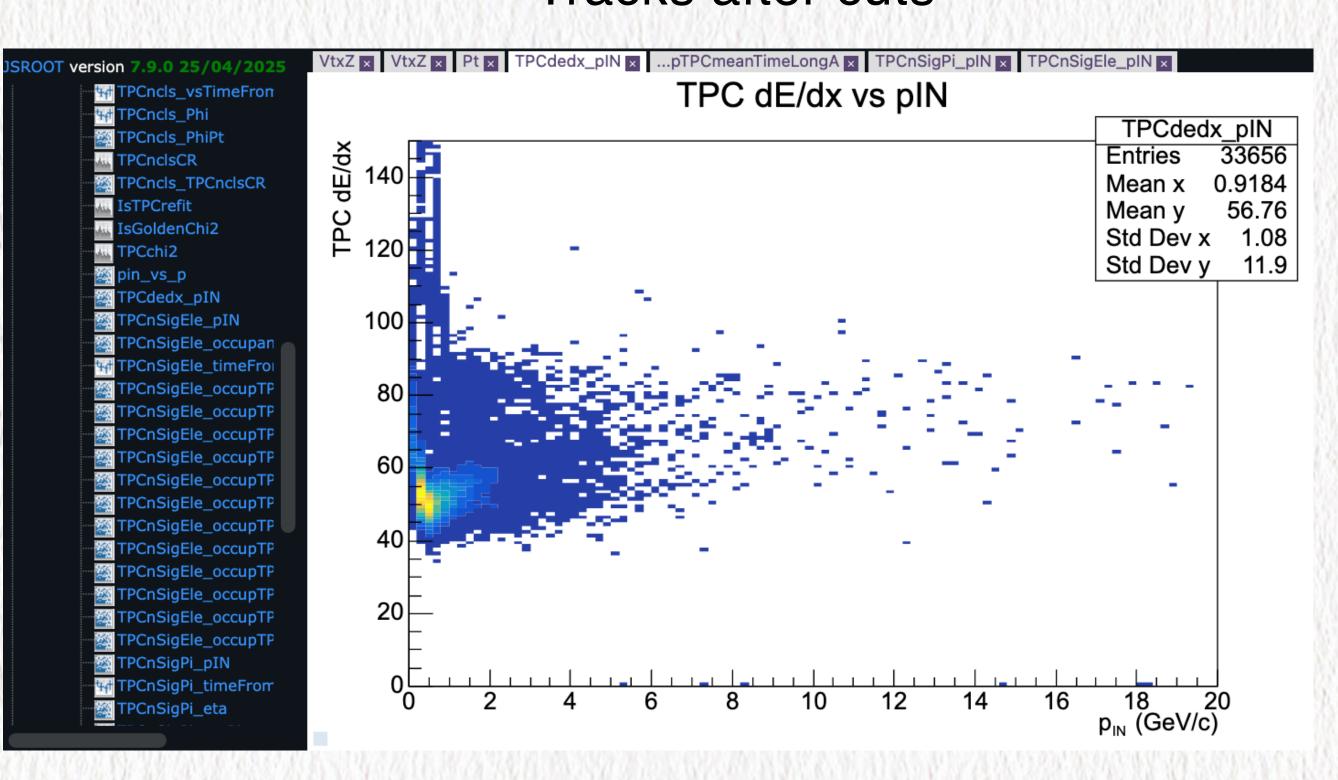

- -- aod-file @input_data.txt
- -- aod-writer-json OutputDirector.json

Table-maker outputs

Event before cuts

Event after cuts



- AnalysisResults.root
- AO2D.root

The outputs after tableMaker workflow

Tracks after cuts

Understand the table-maker outputs (I)


```
"aod-file-private": "@input_data_maker.txt",
```

The file includes the lists of the input AO2D path

```
"processPPWithFilter": "false",
"processPPWithFilterBarrelOnly": "false",
"processPPWithFilterMuonOnly": "false",
"processPPWithFilterMuonMFT": "false",
"processPPBarrelOnly": "true",
 "processrrbarrelonlywithv0s": "false",
"processPPMuonOnly": "false",
"processPPRealignedMuonOnly": "false",
"processPPMuonMFT": "false",
"processPPMuonMFTWithMultsExtra": "false",
"processPbPb": "false",
"processPbPbBarrelOnly": "false",
"processPbPbBarrelOnlyNoTOF": "false",
"processPbPbWithFilterBarrelOnly": "false",
"processPbPbBarrelOnlyWithV0Bits": "false",
 'processPbPbBarrelOnlyWithV0BitsNoTOF": "false",
"processPbPbMuonOnly": "false",
"processPbPbRealignedMuonOnly": "false",
"processPbPbMuonMFT": "false",
"processOnlyBCs": "true"
```

The process to run

- Muon for forward rapidity
- WithFilter for unskimmed pp data
- PbPb for AA collisions

Understand the table-maker outputs (II)

What selections (events, tracks) were used?

```
"table-maker": {
    "cfgEventCuts": "eventStandardSel8",
    "cfgBarrelTrackCuts": "KineCutOnly2",
```

Where to find the contents of these tags?

O2Physics/PWGDQ/Core/CutsLibrary.cxx

```
JSROOT version 7-9-0 25/04/2025

expand all | colapse all
```

```
if (!nameStr.compare("eventStandardSel8")) { // kIsSel8 = kIsTriggerTVX && kNoITSROFrameBorder && kNoTimeFrameBorder
    cut->AddCut(VarManager::kVtxZ, -10.0, 10.0);
    cut->AddCut(VarManager::kIsSel8, 0.5, 1.5);
    return cut;
}
```

```
if (!nameStr.compare("KineCutOnly2")) {
   cut->AddCut(GetAnalysisCut("PIDStandardKine2")); // standard kine cuts usually are applied via Filter in the task
   return cut;
}
```

```
if (!nameStr.compare("PIDStandardKine2")) {
   cut->AddCut(VarManager::kEta, -0.9, 0.9);
   cut->AddCut(VarManager::kPt, 0.1, 1000.0);
   return cut;
}
```

Understand the table-maker outputs (III)

Where were the histograms defined?

```
"cfgQA": "true",
"cfgDetailedQA": "true",
"cfgAddEventHistogram": "vtxpp",
"cfgAddTrackHistogram": "tpcpid,itsvspt,dca",
```

Where to find the contents of these tags?

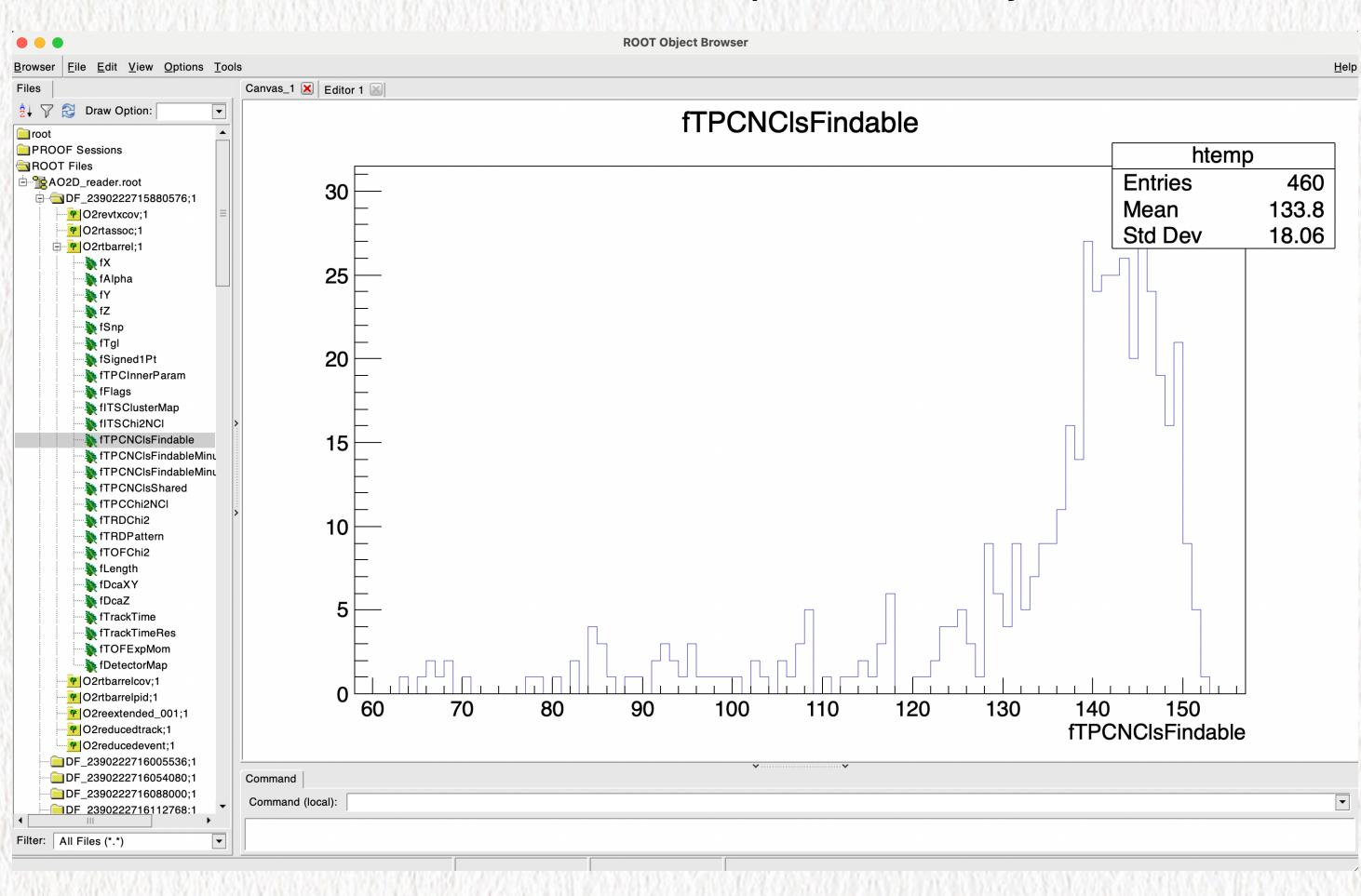
```
O2Physics/PWGDQ/Core/HistogramsLibrary.cxx
```

```
if (subGroupStr.Contains("vtx")) {
   hm->AddHistogram(histClass, "VtxX", "Vtx X", false, 200, -0.1, 0.1, VarManager::kVtxX);
   hm->AddHistogram(histClass, "VtxY", "Vtx Y", false, 200, -0.1, 0.1, VarManager::kVtxY);
   hm->AddHistogram(histClass, "VtxYVtxX", "Vtx Y vs Vtx X", false, 200, -0.06, 0.0, VarManager::kVtxX, 200, -0.03, 0.03, VarManager::kVtxY);
}
if (subGroupStr.Contains("vtxpp")) {
   hm->AddHistogram(histClass, "VtxNContrib", "Vtx n contributors", false, 100, 0.0, 100.0, VarManager::kVtxNcontrib);
}
```

There are also some histograms were defined in the task.cxx

O2Physics/PWGDQ/TableProducer/tableMaker_withAssoc.cxx

```
if (classStr.Contains("Track") && !classStr.Contains("Pairs")) {
  if (classStr.Contains("Barrel")) {
    dqhistograms::DefineHistograms(histMan, objArray->At(iclass)->GetName(), "track", histName);
    if (classStr.Contains("PIDCalibElectron")) {
        dqhistograms::DefineHistograms(histMan, objArray->At(iclass)->GetName(), "track", "postcalib_electron");
    }
    if (classStr.Contains("PIDCalibPion")) {
        dqhistograms::DefineHistograms(histMan, objArray->At(iclass)->GetName(), "track", "postcalib_pion");
    }
    if (classStr.Contains("PIDCalibProton")) {
        dqhistograms::DefineHistograms(histMan, objArray->At(iclass)->GetName(), "track", "postcalib_proton");
    }
}
```


Find the content of the tags

Understand the table-maker outputs (IV)

The tables included in the reducedAOD file were defined in the OutputDirector.json

```
"OutputDirector": {
 "debug_mode": true,
 "resfile": "A02D",
 "OutputDescriptors":
     "table": "AOD/REEXTENDED/1"
   },
     "table": "AOD/REDUCEDEVENT/0"
     "table": "AOD/REDUCEDTRACK/0"
     "table": "AOD/RTBARRELPID/0"
    },
     "table": "AOD/RTBARREL/0"
    },
     "table": "AOD/RTASSOC/0"
     "table": "AOD/REVTXCOV/0"
     "table": "AOD/RTBARRELCOV/0"
  "ntfmerge": 1
```


Find the table you want in the PWGDQ/DataModel/ReducedInfoTables.h

Run table-reader on the reducedAO2D files

The script to run:

./command_reader.sh

o2-analysis-dq-table-reader-with-assoc -b --configuration json://configuration_reader.json --aod-file @input_data_reader.txt

The input_data_reader.txt is the path to the output AOD files from tableMaker task

./A02D/A02D_reader.root

analysis-event-selection
analysis-muon-selection
analysis-track-selection
analysis-asymmetric-pairing
analysis-prefilter-selection
analysis-same-event-pairing
analysis-dilepton-track
analysis-dilepton-track

Further event selections

Further selections on muon

Further selections on central barrel tracks

Run pairing for resonance with legs fulfilling separate cuts

Prefilter tracks to be able to provide a reasonable inv. mass

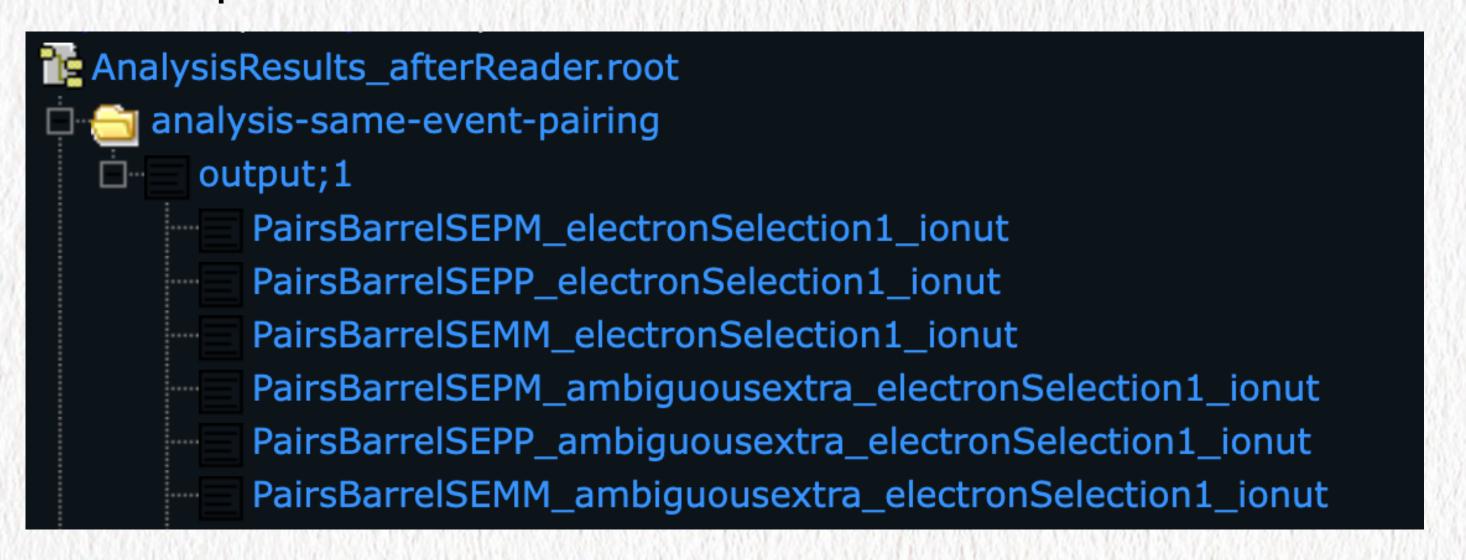
Do the e^+ and e^- or μ^+ and μ^- pairing in same event or mixed-event

For analysis needs a dilepton and a track, such as $B^+ o J/\psi + K^+$, J/ψ -hadron correlation

For analysis needs a dilepton and two tracks, such as $\psi(2S)/X(3872) \to J/\psi + \pi^+ + \pi^-$

Run table-reader on the reducedAO2D files

The script to run:


./command_reader.sh

```
o2-analysis-dq-table-reader-with-assoc -b --configuration json://configuration_reader.json --aod-file
@input_data_reader.txt
```

The input_data_reader.txt is the path to the output AOD files from tableMaker task

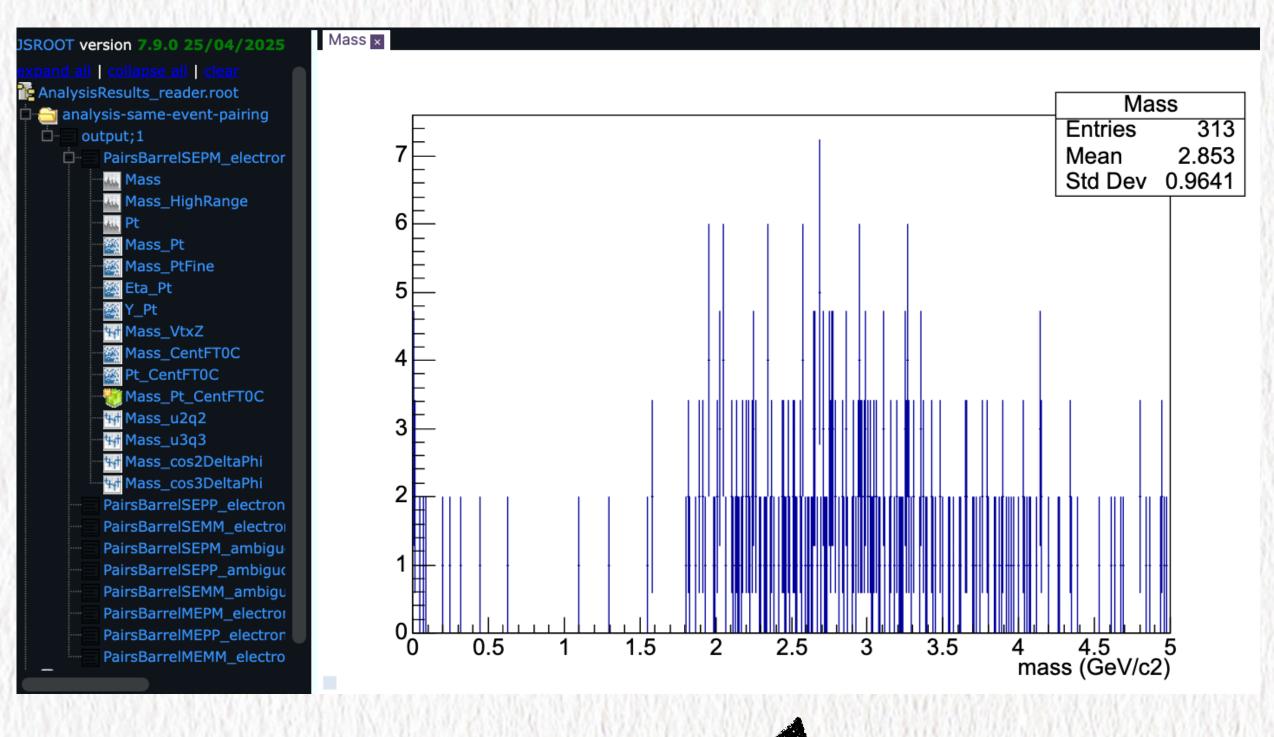
```
./A02D/A02D_reader.root
```

The output from the tableReader

"Which pair" + "trackSelections"

"ambiguousextra" is to subtract due to the double counting

Run table-reader on the reducedAO2D files



The script to run:

./command_reader.sh

o2-analysis-dq-table-reader-with-assoc -b --configuration json://configuration_reader.json --aod-file @input_data_reader.txt

5000F

You can add further event-level and track-level selections at this stage

```
"cfgTrackCuts": "electronSelection1_ionut".
"cfgMuonCuts": "",
"cfgPairCuts": "",
"cfgRemoveCollSplittingCandidates": "false",
"cfgMixingDepth": "100",
"cfgAddSEPHistogram": "barrel,flow,pbpb,dimuon,cumulant,metest,flow-ccdb",
```

2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

on already allows for the

The invariant mass distribution already allows for the start of J/ψ candidates reconstruction

Something more

Are there alternative ways if the histograms/selections are not compiled in the DQ framework

Yes! We can do it in the json level


```
"cfgAddJSONHistograms":>'{\"Histo_test\":{\"type\":\"THn\",\"histClass\":
[\"PairsBarrelSEPM_electronSelection1_ionut\",\"PairsBarrelSEPM_Electron_test\"] \"title\":\"Something2Test\",\"nDimensi
ons\":4,\"vars\":[\"kPt\", \"kEta\",\"kVtxZ\",\"kMass\"],\"binLimits\":[[0.0,1.0,2.0,4.0,6.0,8.0,10.0,14.0,24.0],[-0.9,
-0.72, -0.54, -0.36, -0.18, -5.55112e-17, 0.18, 0.36, 0.54, 0.72, 0.9],[-15, -13, -11, -9, -7, -5, -3, -1, 1, 3, 5, 7,
9, 11, 13, 15],
[4.00, 4.02, 4.04, 4.06, 4.08, 4.10, 4.12, 4.14, 4.16, 4.18, 4.20, 4.22, 4.24, 4.26, 4.28, 4.30, 4.32, 4.34, 4.36, 4.38, 4.40, 4.42, 4.44, 4.46
,4.48,4.50,4.52,4.54,4.56,4.58,4.60,4.62,4.64,4.66,4.68,4.70,4.72,4.74,4.76,4.78,4.80,4.82,4.84,4.86,4.88,4.90,4.92,4.94
,4.96,4.98,5.00,5.02,5.04,5.06,5.08,5.10,5.12,5.14,5.16,5.18,5.20,5.22,5.24,5.26,5.28,5.30,5.32,5.34,5.36,5.38,5.40,5.42
,5.44,5.46,5.48,5.50,5.52,5.54,5.56,5.58,5.60,5.62,5.64,5.66,5.68,5.70,5.72,5.74,5.76,5.78,5.80,5.82,5.84,5.86,5.88,5.90
,5.92,5.94,5.96,5.98,6.00,6.02,6.04,6.06,6.08,6.10,6.12,6.14,6.16,6.18 ]],\"useSparse\":true}}",
```

"cfgAddJSONHistograms" to add self-defined histograms

- Histogram name: "Histo_test"
- Histogram type: "THnSparse"
- Which HistClass:

"PairsBarreISEPM_electronSelection1_ionut" and

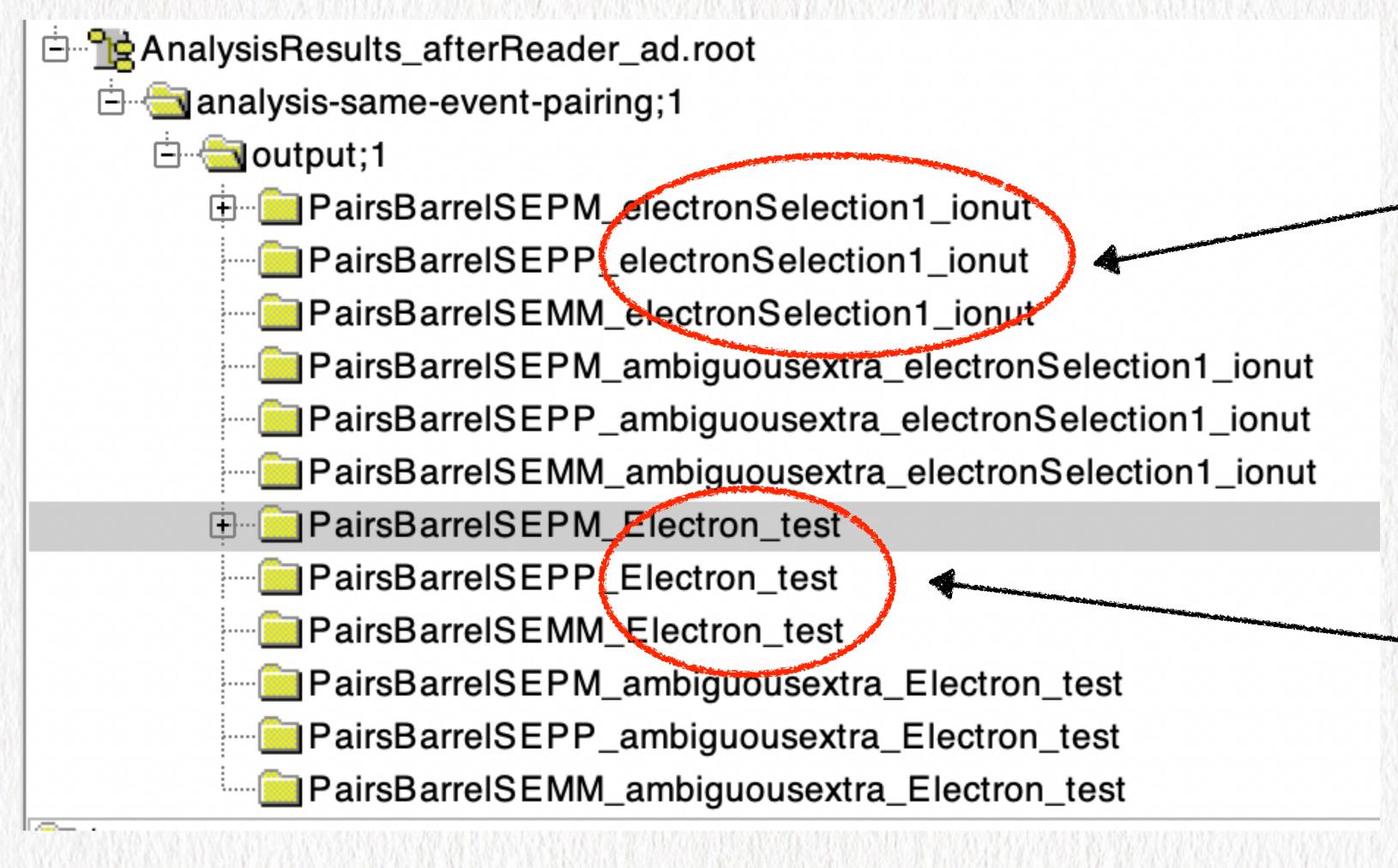
"PairsBarrelSEPM_Electron_test"

- **Histo definition**: 4D, $(p_T, \eta, VtxZ, m)$, binLimits

"cfoTrackCuts": "electronSelection1_ionut", "cfgBarrelTrackCutsJSON":>> {\"Electron_test\": {\"type\":\"AnalysiscompositeCut\",\"title\":\"Electron test\",\"useAND\":true,\"AddCut-jpsiStandardKine\": ,\"AddCut-electronStandardQualityForO2MCdebug\": {\"type\":\"AnalysisCut\",\"library\":\"electronStandardQualityForO2MCdebug\"},\"AddCut-dcaCut1_ionut\": {\"type\":\"AnalysisCut\",\"library\":\"dcaCut1_ionut\"},\"AddCut-nSigmaEl\": {\"type\":\"AnalysisCut\".\"title\":\"nSigmaEl\".\"AddCut-nSigmaEl\": {\"var\":\"kTPCnSigmaEl\",\"cutLow\":-4.0,\"cutHigh\":4.0}}}}

"cfgBarrelTrackCutsJSON" to add self-defined barrel track selections

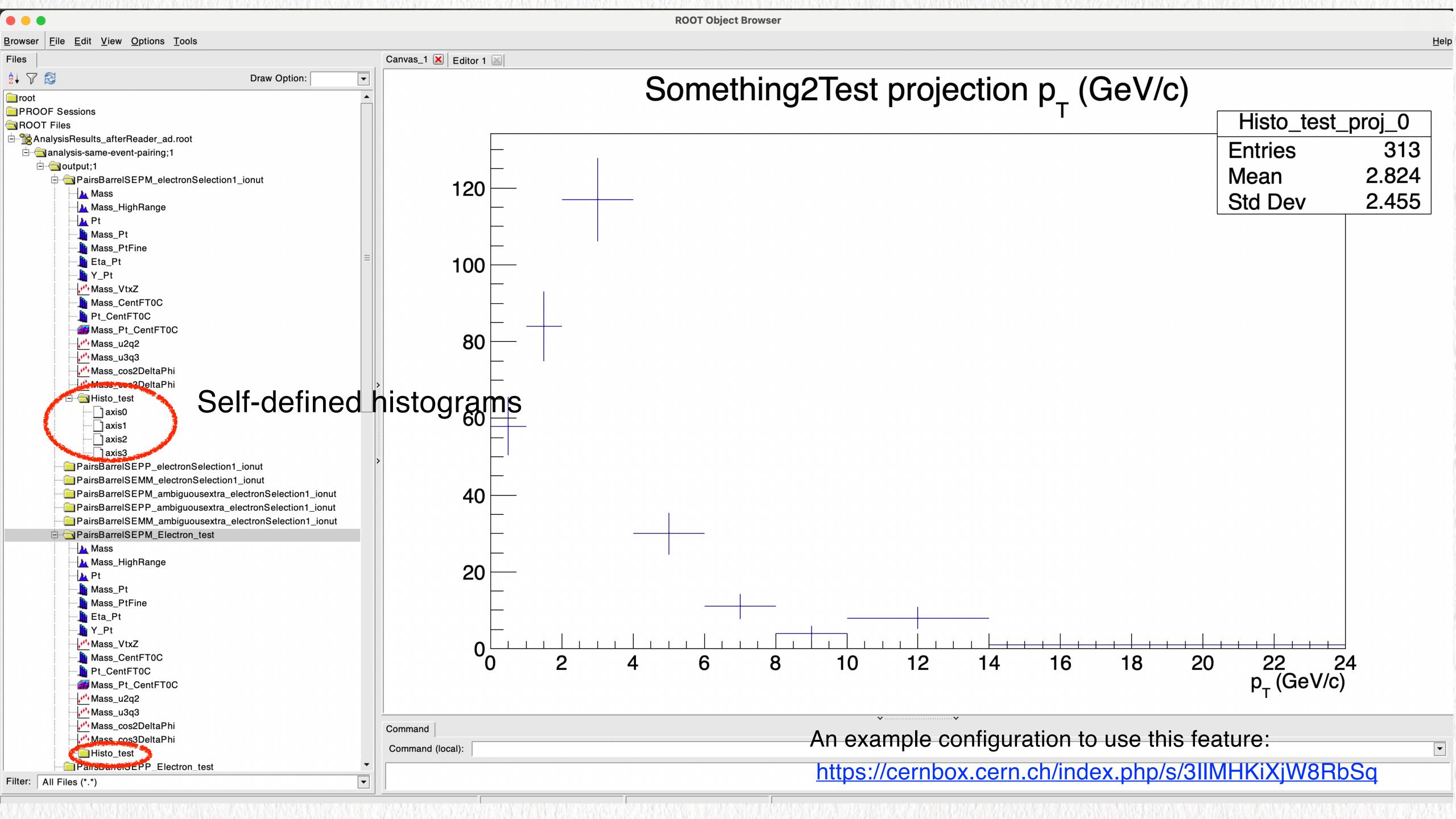
- Selection name: "Electron_test"
- You can use AND or OR to combine many sub-selections
- Sub-selections can be the selection library already defined in the CutLibaraty.cxx
- Sub-selections can also be a self-defined cut based on variables defined in the VarManager.h


"cfgEventCutsJSON": "", "cfgPairCutsJSON": "" "fConfigBdtCutsJSON": "", "cfgMCsignalsJSON": ""

There are some more JSONs, such as on event-selections, pair-selections, Bdt-selections, MCsignals,...

- feel free to play around with it

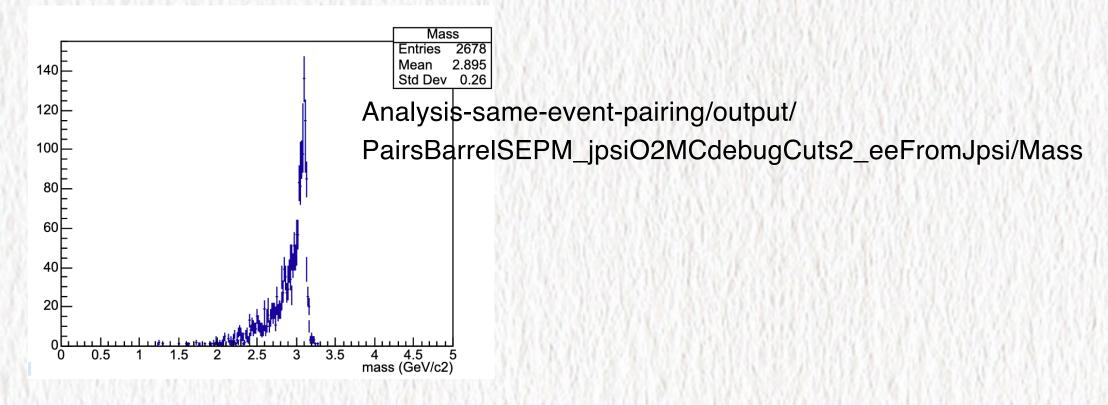
Outputs with self-definition in JSON



PairsBarrelSEPM_"selections"

Compiled selections in the CutLibrary.cxx

Self-defined track selections



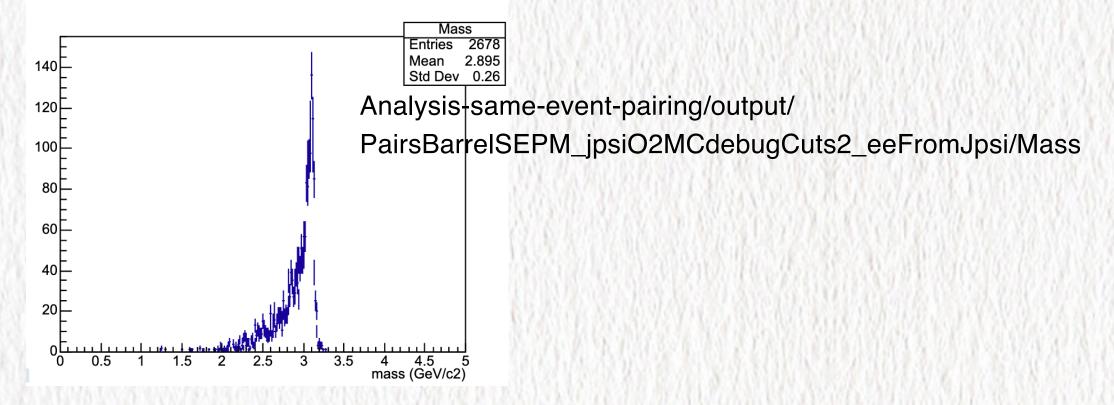
Run MC

We apply the same selections used in the Data to the MC for the efficiency calculation Workflow used for MC samples:

o2-analysis-dq-efficiency-with-assoc -b --configuration json://configuration.json I o2-analysis-mccollision-converter -b --configuration json://configuration.json I o2-analysis-bc-flags-creator -b --configuration json://configuration.json I o2-analysis-ft0-corrected-table -b --configuration json://configuration.json I o2-analysis-pid-tof-merge -b --configuration json://configuration.json I o2-analysis-multcenttable -b --configuration json://configuration.json I o2-analysis-dq-table-maker-mc-with-assoc -b --configuration json://configuration.json I o2-analysis-pid-tpc-service -b --configuration json://configuration.json I o2-analysis-pid-tpc-service -b --configuration json://configuration.json I o2-analysis-propagationservice -b --configuration json://configuration.json I o2-analysis-mccollision-associator -b --configuration json://configuration.json I o2-analysis-mccollisionextra -b --configuration json://configuration.json I o2-analysis-mccollisionextra -b --configuration json://configuration.json --aod-file @input_data.txt

The materials to run MC samples:

https://cernbox.cern.ch/index.php/s/PEjQMs1S2OkrCOk


Run MC

We apply the same selections used in the Data to the MC for the efficiency calculation

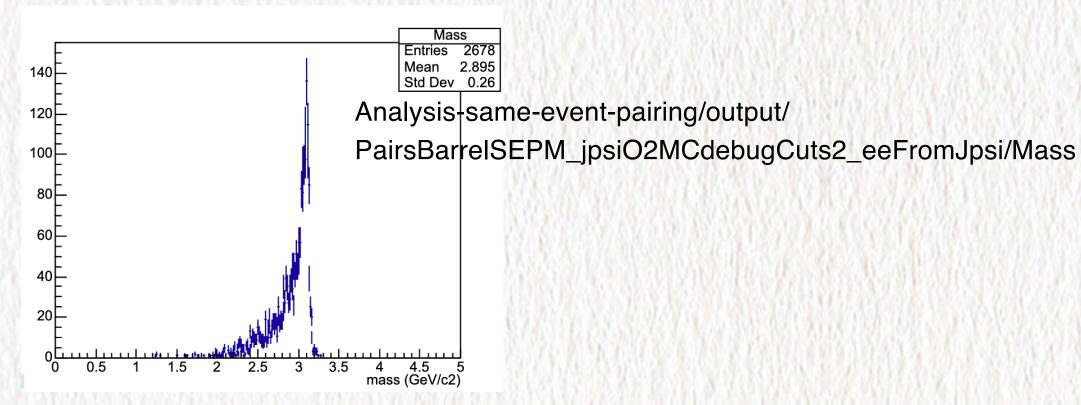
Workflow used for MC samples:

o2-analysis-dq-efficiency-with-assoc -b --configuration json://configuration.json I o2-analysis-mccollision-converter -b --configuration json://configuration.json I o2-analysis-ft0-corrected-table -b --configuration json://configuration.json I o2-analysis-pid-tof-merge -b --configuration json://configuration.json I o2-analysis-tracks-extra-v002-converter -b --configuration json://configuration.json I o2-analysis-multcenttable -b --configuration json://configuration.json I o2-analysis-dq-table-maker-mc-with-assoc -b --configuration.json I o2-analysis-pid-tpc-service -b --configuration.json I o2-analysis-pid-tpc-service -b --configuration.json I o2-analysis-propagationservice -b --configuration.json I o2-analysis-propagationservice -b --configuration.json I o2-analysis-mccollision-associator -b --configuration json://configuration.json I o2-analysis-mccollisionextra -b --configuration.json I o2-analysis-mccollisionextra -b --configuration.json I o2-analysis-mccollisionextra -b --configuration.json://configuration.json --aod-file @input_data.txt

This tutorial provides a simple example of how to run the Jpsi2ee framework.

Many other processes are not covered here, such as flow, polarization, event mixing, AA, ...

Explore and Enjoy!


Run MC

We apply the same selections used in the Data to the MC for the efficiency calculation

Workflow used for MC samples:

o2-analysis-dq-efficiency-with-assoc -b --configuration json://configuration.json | o2-analysis-mccollision-converter -b --configuration json://configuration.json | o2-analysis-ft0-corrected-table -b --configuration json://configuration.json | o2-analysis-ft0-corrected-table -b --configuration json://configuration.json | o2-analysis-tracks-extra-v002-converter -b --configuration json://configuration.json | o2-analysis-multcenttable -b --configuration json://configuration.json | o2-analysis-dq-table-maker-mc-with-assoc -b --configuration.json | o2-analysis-pid-tpc-service -b --configuration.json | o2-analysis-pid-tpc-service -b --configuration.json | o2-analysis-pid-tpc-service -b --configuration.json | o2-analysis-track-to-collision-associator -b --configuration.json | o2-analysis-propagationservice -b --configuration.json | o2-analysis-trackselection -b --configuration.json | o2-analysis-mccollisionextra -b --configuration.json | o

Thank you for your attention!

This tutorial provides a simple example of how to run the Jpsi2ee framework.

Many other processes are not covered here, such as flow, polarization, event mixing, AA, ...

Explore and Enjoy!